太阳成集团(官方tyc138认证)在线平台-App application

您好、欢迎访问本网站!

李昂

发布日期:2021-07-21  来源:   点击量:


姓名

李昂

联系方式



性别

邮箱

ang.li@bjut.edu.cn

学位

博士研究生

职称

副研究员

学术兼职

中国电子显微镜学会 2016-2020 理事

中国电子显微镜学会 2016-2020 电子光学与仪器专业委员会副主任

留学经历

2009.01 至 2014.03 意大利比萨高等师范学校自然科学院

凝聚态物理专业  博士研究生


2012.02 至 2013.08 意大利国家纳米科技中心

意大利国家科学院纳米所   研究员


2013.04 至 2015.03 荷兰埃因霍温理工大学

应用物理系   博士后研究员


2015.04 至 2016.02 荷兰代尔伏特理工大学

应用物理系  博士后研究员


2013.04 至 2016.02 荷兰飞利浦创新中心 客座研究员


教学课程

材料物理

主要研究方向

1. 原位环境电子显微学(in situ ETEM):多场耦合环境中通过球差环境透射电镜原子尺度原位研究材料显微结构与性能的演化规律。

2. 半导体纳米结构外延生长(Semiconductor Epitaxy):基于催化/自催化实现纳米半导体异质结构的图案化气相外延生长,刻蚀,加工与器件生长。

主要科研项目

1. 国家自然科学面上基金:一维III-V族半导体纳米线在二维材料表面范德华外延生长及机理的研究(主持)

2. 北京市自然科学基金重点项目:气氛环境下极小尺寸材料表面和界面原子与气体作用机理的原位动态研究(课题负责人)

3. 中华人民共和国科技部国家重点研发计划-政府间合作项目:电子化学和表面催化在能量转化中应用(课题负责人)

4. 国家自然科学基金面上项目:SnSe基单晶热电材料缺陷与费米能级位置调控的研究(参与)

主要学术成果(论文、专利、专著、译著等)

原位环境电子显微学(in situ ETEM):

1. Oxidation-induced Rhenium   evaporation in Ni-based single crystal superalloy thin lamella. Scripta   Materialia 2021, 114106.

2. In Situ Atomic-scale   Observation of AuCu Alloy Nanowire with Superplasticity and High Strength at   Room Temperature. Materials Today Nano 2021, 15, 100123.

3. Initial oxidation of   Ni-based superalloy and its dynamic microscopic mechanisms: the interface   junction initiated outwards oxidation. Acta Materialia 2021, 116991.

4. Selective oxidation of   nanoscale nickel-based superalloys revealed by multi-dimensional electron   tomography. Materials Characterization 2021, 178, 111219.

5. Co and Pt Dual‐Single‐Atoms with Oxygen‐Coordinated Co–O–Pt Dimer Sites for Ultrahigh   Photocatalytic Hydrogen Evolution Efficiency. Advanced Materials   2021,33, 2003327.

6. Transforming cobalt   hydroxide nanowires into single atom site catalysts. Nano Energy 2021,   105799.

7. Confined Ru nanocatalysts   on Surface to Enhance Ammonia Synthesis: An In situ ETEM Study. ChemCatChem   2021, 13,534-538.

8. Dynamic evolution of   isolated Ru–FeP atomic interface sites for promoting the electrochemical   hydrogen evolution reaction. Journal of Materials Chemistry A   2020, 8 (43), 22607-22612.

9. Engineering the atomic   interface with single platinum atoms for enhanced photocatalytic hydrogen   production. Angewandte Chemie International Edition 2020, 59 (3),   1295-1301.

10. Structural evolution of topologically closed packed phase in   a Ni-based single crystal superalloy. Acta Materialia 2020, 185,   233-244.

11. In situ oxidation analysis on Co-Al-W-Ti-Ta single-crystal   alloy in an environmental TEM. Corrosion Science 2020, 108725.

12. Dynamic Epitaxial Crystallization of SnSe2 on Oxidized SnSe   Surface and its Atomistic Mechanisms. ACS Applied Materials & Interfaces 2020,   12, 27700-27707.

13. Engineering unsymmetrically coordinated Cu-S1N3 single atom   sites with enhanced oxygen reduction activity. Nature communications   2020, 11 (1), 1-11.

14. Iridium single-atom catalyst on nitrogen-doped carbon for   formic acid oxidation synthesized using a general host–guest strategy. Nature   Chemistry 2020, 12 (8), 764-772.

15. Understanding the structural evolution of Au/WO2.7 compounds   in hydrogen atmosphere by atomic scale in situ environmental TEM. Nano   Research 2020, 13 (11), 3019-3024.

16. A comparative study of rafting mechanisms of Ni-based single   crystal superalloys. Materials & Design 2020, 196,   109097.

17. Silver single-atom catalyst for efficient electrochemical CO2   reduction synthesized from thermal transformation and surface reconstruction. Angewandte   Chemie International Edition 2020,60,6170-6176.

18. Multidimensional microscopic investigation of   oxidation-induced hollow cavities in a Co–Al–W–Ti–Ta alloy nanotip by   electron tomography. Journal of Alloys and Compounds   2020, 848, 156243.

19. Ultrahigh Photocatalytic Rate at a Single-Metal-Atom-Oxide. Advanced   Materials 2020, 80,547-570.

20. Engineering the Atomic Interface with Single Platinum Atoms   for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie International   Edition 2020, 59, 1295-1301.

21. Effect of Cr on the microstructure and oxidation properties   of Co-Al-W superalloys studied by in situ environmental TEM. Corrosion   Science 2019, 161, 108179.

22. Low Temperature Oxidation of Ethane to Oxygenates by Oxygen   over Iridium-Cluster Catalysts. Journal of American Chemical Society   2019, 141 (48), 18921-18925.

23. Bismuth Single Atoms Resulting from Transformation of   Metal–Organic Frameworks and Their Use as Electrocatalysts for CO2 Reduction.   Journal   of American Chemical Society 2019, 141 (42), 16569-16573.

24. Magnetically recoverable Ag/Bi2Fe4O9   nanoparticles as a visible-light-driven photocatalyst. Chemical Physics Letters   2019, 715, 129-133.

25. Enhanced thermoelectric performance in Cu2GeSe3   via (Ag, Ga)-co-doping on cation sites. Journal of Alloys and Compounds   2018, 769, 218-225.

26. Highly selective oxidation of methane to methanol at ambient   conditions by titanium dioxide-supported iron species. Nature Catalysis 2018,   1 (11), 889-896.

27. Constructing NiCo/Fe3O4 Heteroparticles   within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American   Chemical Society 2018 140, (45), 15336-15341.

28. Direct observation of noble metal nanoparticles transforming   to thermally stable single atoms. Nature nanotechnology 2018, 13   (9), 856-861.

29. Ultra-high average figure of merit in synergistic band   engineered SnxNa1-xSe0.9S0.1   single crystals. Materials Today 2018, 21 (5), 501-50.

30. A second amorphous layer underneath surface oxide. Microscopy   and Microanalysis 2017, 23 (1), 173-178.


半导体纳米结构外延生长(Semiconductor   Epitaxy)

1. Observation of the   antiferromagnetic spin Hall effect. Nature Materials 2021, 20,   800–804.

2. Ultrafast hole spin qubit   with gate-tunable spin–orbit switch functionality. Nature Nanotechnology 2021,   16, 308–312.

3. Growth and strain   relaxation mechanisms of InAs/InP/GaAsSb core-dual-shell nanowires. Crystal   Growth & Design 2020, 20 (2), 1088-1096.

4. Kinetic control of   morphology and composition in Ge/GeSn core/shell nanowires. ACS   nano 2020, 14 (2), 2445-2455.

5. Large exchange splitting   in monolayer graphene magnetized by an antiferromagnet. Nature Electronics   2020, 3, 604–611.

6. Electrically pumped   continuous-wave O-band quantum-dot superluminescent diode on silicon. Optics   Letters 2020, 45 (19), 5468-5471.

7. Growth and Strain   Relaxation Mechanisms of InAs/InP/GaAsSb Core-Dual-Shell Nanowires. Crystal   Growth & Design 2020, 20 (2), 1088-1096.

8. Hard Superconducting Gap   and Diffusion-Induced Superconductors in Ge–Si Nanowires. Nano   letters 2020, 20 (1), 122-130.

9. Strain engineering in   Ge/GeSn core/shell nanowires, Applied Physics Letters 2019, 115   (11), 113102.

10. Multiple Andreev reflections and Shapiro steps in a Ge-Si   nanowire Josephson junction. Physical Review Materials 2019, 3   (8), 084803. (Semiconductor Epitaxy)

11. Polychromatic emission in a wide energy range from InP-InAs-InP   multi-shell nanowires. Nanotechnology 2019, 30 (19).

12. Josephson Effect in a Few-Hole Quantum Dot. Advanced   materials 2018, 30 (44), 1802257.

13. Spin-Orbit Interaction and Induced Superconductivity in a   One-Dimensional Hole Gas. Nano letters 2018, 18 (10), 6483-6488.

14. Boosting Hole Mobility in Coherently Strained [110]-Oriented   Ge-Si Core-Shell Nanowires. Nano letters 2017, 17 (4),   2259-2264.

15. Growth and Optical Properties of Direct Band Gap Ge/Ge0.87Sn0.13   Core/Shell Nanowire Arrays. Nano letters 2017, 17 (3),   1538-1544.

16. Atom-by-atom analysis of semiconductor nanowires with parts   per million sensitivity. Nano letters 2017, 17 (2),   599-605.

个人自述(个人经历、获奖情况等)

李昂,副研究员,博士生导师。从事环境条件下服役状态纳米材料的显微结构演化与使用性能的基础应用研究。以第一作者、通讯作者或合作者在Nature子刊, Adv. Mater., Acta Mater. , Nano Energy, J. Am. Chem. Soc. ,Nano Res. ,Nano Lett. ,ACS Appl. Mater. Interfaces,Corros. Sci. ,Scr. Mater.等纳米材料和半导体、催化、结构材料、能源交叉领域发表论文40余篇,他引2000余次;h因子22,i10因子35。参与ACS Catal.,Chem. Mater.,ACS Appl. Nano Mater.,ACS Appl. Mater.   Interfaces,Semicond. Sci. Technol.,J. Alloy Compd.等SCI期刊审稿工作。2016年入选北京市特聘教授青年项目,作为项目负责人承担国家自然科学基金、科技部国家重点研发计划及省部级以上科研基金。

个人风采照



上一条:商旸

下一条:卢岳

招生咨询


本科招生     010-67391758


研究生招生  010-67392281(机械工程系)
                 010-67392383(材料科学与工程系、激光工程研究院)

资料下载

北京工业大学

   太阳成集团tyc138

北京市朝阳区平乐园100号 邮编:100124

XML 地图